资源类型

期刊论文 1632

年份

2024 1

2023 73

2022 109

2021 106

2020 82

2019 109

2018 87

2017 91

2016 72

2015 91

2014 85

2013 66

2012 83

2011 79

2010 75

2009 48

2008 77

2007 92

2006 38

2005 27

展开 ︾

关键词

稳定性 11

风险分析 9

分析 4

可持续发展 4

对策 4

影响因素 4

数值模拟 4

隧道 4

ANSYS 3

数值分析 3

监测 3

裂缝 3

2035年 2

BNLAS 2

COVID-19 2

DX桩 2

HIV感染孕产妇 2

SARS 2

“一带一路” 2

展开 ︾

检索范围:

排序: 展示方式:

Extended stochastic resonance (SR) and its applications in weak mechanical signal processing

Niaoqing HU, Min CHEN, Guojun QIN, Lurui XIA, Zhongyin PAN, Zhanhui FENG,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 450-461 doi: 10.1007/s11465-009-0072-3

摘要: To catch symptoms of machine failure as early as possible, one of the most important strategies is to apply more progressive techniques during signal processing. This paper presents a method based on stochastic resonance (SR) to detect weak fault signal. First, a discrete model of a bistable system that can demonstrate SR is researched, and the stability condition for controlling the selection of model parameters of the discrete model and guarantee the solving convergence are established. Then, the frequency range of the weak signals that the SR model can detect is extended through a type of normalized scale transformation. Finally, the method is applied to extract the weak characteristic component from heavy noise to indicate the little crack fault in a bearing outer circle.

关键词: extended stochastic resonance (SR)     stability analysis of SR     scale transform     weak signal detection     incipient fault detection     envelope analysis    

Modified Bishop method for stability analysis of weakly sloped subgrade under centrifuge model test

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 727-741 doi: 10.1007/s11709-021-0730-z

摘要: The sliding forms of weak sloped and horizontal subgrades during the sliding process differ. In addition, the sliding form of weakly sloped subgrades exhibits considerable slippage and asymmetry. The accuracy of traditional slice methods for computing the stability safety factor of weakly sloped subgrades is insufficient for a subgrade design. In this study, a novel modified Bishop method was developed to improve the accuracy of the stability safety factor for different inclination angles. The instability mechanism of the weakly sloped subgrade was considered in the proposed method using the “influential force” and “additional force” concepts. The “additional force” reflected the weight effect of the embankment fill, whereas the “influential force” reflected the effect of the potential energy difference. Numerical simulations and experimental tests were conducted to evaluate the advantages of the proposed modified Bishop method. Compared with the traditional slice method, the error between the proposed method and the exact value is less than 32.3% in calculating the safety factor.

关键词: weakly sloped subgrade     stability analysis     additional force     influential force     modified Bishop method    

Three-dimensional stability analysis of the dam foundation at Baise

XU Qianjun, LI Xu, CHEN Zuyu

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 217-221 doi: 10.1007/s11709-007-0026-y

摘要: It is usually difficult to determine the actual safety factors of rock masses in an ordinary two-dimensional stability analysis if the safety factors of the different cross sections in the rock mass vary significantly. In addition to the actual slope, arch dam abutment, and the actual foundation of a high building, another example is that the different cross sections of the foundation in the monolith of a gravity dam vary significantly, just like the condition at the overflow dam in the Baise project. A three-dimensional stability analysis method based on the upper-bound theorem was employed to solve this problem. The parameters used in the analysis were obtained from geomechanics tests, as well as continuity simulations of the randomly distributed joints. Two failure patterns against sliding are analyzed. One pattern is the foundation slide along deep-seated planes which were determined by calculations. The other pattern is the foundation slide along the planes across the bottom of the high steps in the foundation pit. The results indicate that a special overflow dam monolith can be considered to be safe in case of considering the three dimensional effect. However, a key wall with a depth of 5m must be constructed at the upper side of this monolith in order to ensure the safety of the foundation.

关键词: ordinary two-dimensional     randomly     monolith     three-dimensional stability     different    

Design and stability analysis of continuous skew tied-arch bridge over Bin Jiang River

YU Jiancheng, TONG Hao, HUANG Wei

《结构与土木工程前沿(英文)》 2008年 第2卷 第1期   页码 37-42 doi: 10.1007/s11709-008-0004-z

摘要: A tied arch bridge without wind bracing was built over the Bin Jiang River, with oblique angle of 20°. Its main design details are described and mechanical performances are analyzed. The stability analytical types are also introduced and the first elastic stability theory is used. A space finite element model has been built to analyze the stability performances in both construction and operation stages for single span or continuous, orthogonal or oblique bridge. The influence of stiffness of the end crossbeam is also analyzed. The result shows that out-plane buckling occur for a rigid tie and similar no matter whether it is single span or continuous and orthogonal or oblique. When there are more and stronger inner crossbeams, the influence of the end crossbeams on arch stability becomes unremarkable.

关键词: out-plane buckling     unremarkable     crossbeam     stability analytical     orthogonal    

Stability analysis of layered slopes in unsaturated soils

Guangyu DAI; Fei ZHANG; Yuke WANG

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 378-387 doi: 10.1007/s11709-022-0808-2

摘要: This study presents stability analyses of layered soil slopes in unsaturated conditions and uses a limit equilibrium method to determine the factor of safety involving suction stress of unsaturated soil. One-dimensional steady infiltration and evaporation conditions are considered in the stability analyses. An example of a two-layered slope in clay and silt is selected to verify the used method by comparing with the results of other methods. Parametric analyses are conducted to explore the influences of the matric suction on the stability of layered soil slopes. The obtained results show that larger suction stress provided in unsaturated clay dominates the stability of the layered slopes. Therefore, the location and thickness of the clay layer have significant influences on slope stability. As the water level decreases, the factor of safety reduces and then increases gradually in most cases. Infiltration/evaporation can obviously affect the stability of unsaturated layered slopes, but their influences depend on the soil property and thickness of the lower soil layer.

关键词: slope stability     suction stress     unsaturated soil     layered slope     limit equilibrium    

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 376-382 doi: 10.1007/s11709-010-0086-2

摘要: Pre-tensioned high strength trusses using alloy steel bar are widely used as glass wall supporting systems because of the high degree of transparency. The breakage of glass panes in this type of system occurs occasionally, likely to be due to error in design and analysis in addition to other factors like glass impurity and stress concentration around opening in a spider system. Most design does not consider the flexibility of supports from finite stiffness of supporting steel or reinforced concrete beams. The resistance of lateral wind pressure of the system makes use of high tension force coupled with the large deflection effect, both of which are affected by many parameters not generally considered in conventional structures. In the design, one must therefore give a careful consideration on various effects, such as support settlement due to live loads and material creep, temperature change, pre-tension force, and wind pressure. It is not uncommon to see many similar glass wall systems fail in the wind load test chambers under a design wind speed. This paper presents a rigorous analysis and design of this type of structural systems used in a project in Hong Kong, China. The stability function with initial curvature is used in place of the cubic function, which is only accurate for linear analysis. The considerations and analysis techniques are believed to be of value to engineers involved in the design of the structural systems behaving nonlinearly.

关键词: tension system     glass wall     nonlinear analysis     pre-tensioning     second-order analysis    

Slope stability analysis based on big data and convolutional neural network

Yangpan FU; Mansheng LIN; You ZHANG; Gongfa CHEN; Yongjian LIU

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 882-895 doi: 10.1007/s11709-022-0859-4

摘要: The Limit Equilibrium Method (LEM) is commonly used in traditional slope stability analyses, but it is time-consuming and complicated. Due to its complexity and nonlinearity involved in the evaluation process, it cannot provide a quick stability estimation when facing a large number of slopes. In this case, the convolutional neural network (CNN) provides a better alternative. A CNN model can process data quickly and complete a large amount of data analysis in a specific situation, while it needs a large number of training samples. It is difficult to get enough slope data samples in practical engineering. This study proposes a slope database generation method based on the LEM. Samples were amplified from 40 typical slopes, and a sample database consisting of 20000 slope samples was established. The sample database for slopes covered a wide range of slope geometries and soil layers’ physical and mechanical properties. The CNN trained with this sample database was then applied to the stability prediction of 15 real slopes to test the accuracy of the CNN model. The results show that the slope stability prediction method based on the CNN does not need complex calculation but only needs to provide the slope coordinate information and physical and mechanical parameters of the soil layers, and it can quickly obtain the safety factor and stability state of the slopes. Moreover, the prediction accuracy of the CNN trained by the sample database for slope stability analysis reaches more than 99%, and the comparisons with the BP neural network show that the CNN has significant superiority in slope stability evaluation. Therefore, the CNN can predict the safety factor of real slopes. In particular, the combination of typical actual slopes and generated slope data provides enough training and testing samples for the CNN, which improves the prediction speed and practicability of the CNN-based evaluation method in engineering practice.

关键词: slope stability     limit equilibrium method     convolutional neural network     database for slopes     big data    

Surficial stability analysis of soil slope under seepage based on a novel failure mode

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 712-726 doi: 10.1007/s11709-021-0729-5

摘要: Normally, the edge effects of surficial landslides are not considered in the infinite slope method for surficial stability analysis of soil slopes. In this study, the limit stress state and discrimination equation of an infinite slope under saturated seepage flow were analyzed based on the Mohr-Coulomb strength criterion. Therefore, a novel failure mode involving three sliding zones (upper tension zone, middle shear sliding zone, and lower compression zone) was proposed. Accordingly, based on the limit equilibrium analysis, a semi-analytical framework considering the edge effect for the surficial stability of a soil slope under downslope seepage was established. Subsequently, the new failure mode was verified via a numerical finite element analysis based on the reduced strength theory with ABAQUS and some simplified methods using SLIDE software. The results obtained by the new failure mode agree well with those obtained by the numerical analysis and traditional simplified methods, and can be efficiently used to assess the surficial stability of soil slopes under rainwater seepage. Finally, an evaluation of the infinite slope method was performed using the semi-analytical method proposed in this study. The results show that the infinite slope tends to be conservative because the edge effect is neglected, particularly when the ratio of surficial slope length to depth is relatively small.

关键词: soil slope     seepage     surficial failure mode     stress state     edge effects    

Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations

Wengang ZHANG, Libin TANG, Hongrui LI, Lin WANG, Longfei CHENG, Tingqiang ZHOU, Xiang CHEN

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1247-1261 doi: 10.1007/s11709-020-0655-y

摘要: Landslide is a common geological hazard in reservoir areas and may cause great damage to local residents’ life and property. It is widely accepted that rainfall and periodic variation of water level are the two main factors triggering reservoir landslides. In this study, the Bazimen landslide located in the Three Gorges Reservoir (TGR) was back-analyzed as a case study. Based on the statistical features of the last 3-year monitored data and field instrumentations, the landslide susceptibility in an annual cycle and four representative periods was investigated via the deterministic and probabilistic analysis, respectively. The results indicate that the fluctuation of the reservoir water level plays a pivotal role in inducing slope failures, for the minimum stability coefficient occurs at the rapid decline period of water level. The probabilistic analysis results reveal that the initial sliding surface is the most important area influencing the occurrence of landslide, compared with other parts in the landslide. The seepage calculations from probabilistic analysis imply that rainfall is a relatively inferior factor affecting slope stability. This study aims to provide preliminary guidance on risk management and early warning in the TGR area.

关键词: reliability analysis     Bazimen landslide     rainfall     reservoir water level     slope stability    

On the seismic stability analysis of reinforced rock slope and optimization of prestressed cables

Wenbo ZHENG, Xiaoying ZHUANG, Yongchang CAI

《结构与土木工程前沿(英文)》 2012年 第6卷 第2期   页码 132-146 doi: 10.1007/s11709-012-0152-z

摘要: The evaluation of the seismic stability of high rock slopes is of vital importance to ensure the safe operation of the hydropower stations. In this paper, an equivalent pseudo-static force analysis based on the finite element method is developed to evaluate the seismic stability of reinforced rock slopes where the prestressed cables are modeled by the bar elements applied with nodal forces and bounded only at the anchored parts. The method is applied to analyze a high rock slope in south-west China and the optimization of cables. The stabilization effects of prestressed cables on the seismic stability of the slope are studied, the simulations of the concrete heading are discussed and the potential failure modes of the shear concrete plug are compared. Based on this, the optimization of cables is studied including the anchor spacing and inclined angles.

关键词: high rock slope     reinforced system     optimization     prestressed cable     seismicity    

Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model

Yaoru LIU, Zhu HE, Bo LI, Qiang YANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 24-31 doi: 10.1007/s11709-013-0190-1

摘要: The rigid-body limit equilibrium method cannot reflect the actual stress distribution in a rock mass, and the finite-element-based strength reduction method also has some problems with respect to convergence. To address these problems, a multi-grid method was adopted in this study to establish a structural grid for finite element computation and a slip surface grid for computing slope stability safety factors. This method can be used to determine the stability safety factor for any slip surface or slide block through a combination of nonlinear finite element analysis and limit equilibrium analysis. An ideal elastic–plastic incremental analysis method based on the Drucker–Prager yield criterion was adopted in the nonlinear finite element computation. Elasto-plastic computation achieves good convergence for both small load steps and large load steps and can increase computation precision to a certain extent. To increase the scale and accuracy of the computation, TFINE, a finite element parallel computation program, was used to analyze the influence of grid density on the accuracy of the computation results and was then applied to analysis of the stability of the Jinping high slope. A comparison of the results with results obtained using the rigid-body limit equilibrium method showed that the slope stability safety factors determined using finite element analysis were greater than those obtained using the rigid-body limit equilibrium method and were in better agreement with actual values because nonlinear stress adjustment was considered in the calculation.

关键词: slope     stability     multi-grid method     nonlinear     finite element method    

土坡稳定分析应力状态新方法的过程解析

王国体,王婉娣

《中国工程科学》 2010年 第12卷 第1期   页码 52-55

摘要:

依据土体应力状态、计算边坡稳定安全系数的思想,结合对土体根本性质的认识,对基本假定、公式推导过程和工程应用进行了详细的说明。由于土坡稳定安全系数的计算公式在理论分析依据是严密的,推证得到的计算公式是正确的,所以在工程实用是可靠的。文章为该方法的工程应用和深入开展相关的研究奠定坚实的基础。

关键词: 土坡稳定分析方法     应力状态     稳定安全系数    

Stability analysis on Tingzikou gravity dam along deep-seated weak planes during earthquake

Weiping HE, Yunlong HE

《结构与土木工程前沿(英文)》 2012年 第6卷 第1期   页码 69-75 doi: 10.1007/s11709-012-0146-x

摘要: The stability of a gravity dam against sliding along deep-seated weak planes is a universal and important problem encountered in the construction of dams. There is no recommended method for stability analysis of the dam on deep-seated weak planes under earthquake condition in Chinese design codes. Taking Tingzikou dam as an example, the research in this paper is focused on searching a proper way to evaluate the seismic safety of the dam against sliding along deep-seated weak planes and the probable failure modes of dam on deep-seated weak planes during earthquake. It is concluded that there are two probable failure modes of the dam along the main weak geological planes in the foundation. In the first mode, the concrete tooth under the dam will be cut and then the dam together with part foundation will slide along the muddy layer; in the second mode, the dam together with part foundation will slide along the path consist of the weak rock layer under the tooth and the muddy layer downstream the tooth. While there is no geological structure planes to form the second slip surface, the intersection of the main and the second slip surface is 40 to 80 m downstream from dam toe, and the angle between the second slip surface and the horizontal plane probably be 25 to 45 degrees.

关键词: gravity dam     deep-seated weak planes     stability against sliding     earthquake    

Optimization of WEDM process of pure titanium with multiple performance characteristics using Taguchi’s DOE approach and utility concept

Rupesh CHALISGAONKAR, Jatinder KUMAR

《机械工程前沿(英文)》 2013年 第8卷 第2期   页码 201-214 doi: 10.1007/s11465-013-0256-8

摘要:

This paper describes the development of multi response optimization technique using utility method to predict and select the optimal setting of machining parameters in wire electro-discharge machining (WEDM) process. The experimental studies in WEDM process were conducted under varying experimental conditions of process parameters, such as pulse on time(Ton), pulse off time(Toff), peak current (IP), wire feed (WF), wire tension (WT) and servo voltage (SV) using pure titanium as work material. Experiments were planned using Taguchi’s L27 orthogonal array. Multi response optimization was performed for both cutting speed (CS) and surface roughness (SR) using utility concept to find out the optimal process parameter setting. The level of significance of the machining parameters for their effect on the CS and SR was determined by using analysis of variance (ANOVA). Finally, confirmation experiment was performed to validate the effectiveness of the proposed optimal condition.

关键词: wire electro-discharge machining (WEDM)     Taguchi method     analysis of variance (ANOVA)     utility concept     cutting speed (CS)     surface roughness (SR)    

Stability analysis of slopes with planar failure using variational calculus and numerical methods

Norly BELANDRIA, Roberto ÚCAR, Francisco M. LEÓN, Ferri HASSANI

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1262-1273 doi: 10.1007/s11709-020-0657-9

摘要: This study investigates the technique of variational calculus applied to estimate the slope stability considering the mechanism of planar failure. The critical plane failure surface should be determined because it theoretically indicates the most unfavorable plane to be considered when stabilizing a slope to rectify the instability generated by several statistically possible planes. This generates integrals that can be solved by numerical methods, such as the Newton Cotes and the finite differences methods. Additionally, a system of nonlinear equations is obtained and solved. The surface of the critical planar failure is determined by applying the condition of transversality in mobile boundaries, for which various examples are provided. The number of slices is varied in one of the examples, while the surface of the critical planar failure is determined in the others. Results are compared using analytical methods through axis rotations. All the results obtained by considering normal stress, safety factors, and critical planar failure are nearly the same; however, in this research, a study is carried out for “ ” number of slices using programming methods. Sub-routines are important because they can be applied in slopes with different geometry, surcharge, interstitial pressure, and pseudo-static load.

关键词: slopes stability     planar failure     variational calculus     numerical methods    

标题 作者 时间 类型 操作

Extended stochastic resonance (SR) and its applications in weak mechanical signal processing

Niaoqing HU, Min CHEN, Guojun QIN, Lurui XIA, Zhongyin PAN, Zhanhui FENG,

期刊论文

Modified Bishop method for stability analysis of weakly sloped subgrade under centrifuge model test

期刊论文

Three-dimensional stability analysis of the dam foundation at Baise

XU Qianjun, LI Xu, CHEN Zuyu

期刊论文

Design and stability analysis of continuous skew tied-arch bridge over Bin Jiang River

YU Jiancheng, TONG Hao, HUANG Wei

期刊论文

Stability analysis of layered slopes in unsaturated soils

Guangyu DAI; Fei ZHANG; Yuke WANG

期刊论文

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

期刊论文

Slope stability analysis based on big data and convolutional neural network

Yangpan FU; Mansheng LIN; You ZHANG; Gongfa CHEN; Yongjian LIU

期刊论文

Surficial stability analysis of soil slope under seepage based on a novel failure mode

期刊论文

Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations

Wengang ZHANG, Libin TANG, Hongrui LI, Lin WANG, Longfei CHENG, Tingqiang ZHOU, Xiang CHEN

期刊论文

On the seismic stability analysis of reinforced rock slope and optimization of prestressed cables

Wenbo ZHENG, Xiaoying ZHUANG, Yongchang CAI

期刊论文

Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model

Yaoru LIU, Zhu HE, Bo LI, Qiang YANG

期刊论文

土坡稳定分析应力状态新方法的过程解析

王国体,王婉娣

期刊论文

Stability analysis on Tingzikou gravity dam along deep-seated weak planes during earthquake

Weiping HE, Yunlong HE

期刊论文

Optimization of WEDM process of pure titanium with multiple performance characteristics using Taguchi’s DOE approach and utility concept

Rupesh CHALISGAONKAR, Jatinder KUMAR

期刊论文

Stability analysis of slopes with planar failure using variational calculus and numerical methods

Norly BELANDRIA, Roberto ÚCAR, Francisco M. LEÓN, Ferri HASSANI

期刊论文